Understanding Combustible Dust Hazards: Basic Measures you can take to Ensure Safety

Michigan Safety Conference
April 17, 2019

Mike Snyder PE CSP CFPS
Executive Vice President, Process Safety
Email: process-safety-usa@dekra.com
Phone: (609) 799-4449
Outline for Today’s Discussion:

• Introduction
• Combustible Dust Basics
 • Assessing Flash Fire & Explosion Dust Hazards
 • What Makes a Dust Become a Combustible Hazard?
• Data & Information for Combustible Dust Classification
• Establishing a “Basis of Safety” for Combustible Dust Ops
• New (and Old) Requirements in IFC (2018)
• Introduce the Table of References
• Discussion & Questions
DEKRA Process Safety: Serving as a Trusted Safety Advisor

- Integrated Solutions Provider
 - Process Safety Consulting, Engineering and Laboratory Testing
 - Combustible Dust Testing & Analysis
 - Data Management & Analytics
 - Organizational Safety
 - Organizational Reliability (Human Error & Fatigue)

For more information:
www.Dekra.us/process-safety
US Chemical Safety Board’s Drivers of Critical Chemical Safety Change

• Key Focus Areas of CSB Recommendations & Improvement Need

• 5 Targeted Areas:
 • Combustible Dust Safety
 • Process Safety Management for the 21st Century
 • Emergency Planning & Response
 • Preventative Maintenance
 • Safe Hot Work Practices

• Each Area “Championed” by CSB Board Member

• Web Information: https://www.csb.gov/mostwanted/
Combustible Dust Hazard Basics
Conditions for a Combustible Dust Explosion

- OXIDANT
- FUEL
- IGNITION SOURCE
- CONFINEMENT
- SUSPENSION
Secondary Explosions Present Additional Risks

1. PRIMARY EXPLOSION

2. BLAST WAVE

3. SECONDARY EXPLOSION

- DUST LAYER
- DUST CLOUD FORMED
Remove the CONFINEMENT Leg \Rightarrow Flash Fire
Remove the SUSPENSION Leg \Rightarrow “Regular” Fire
Remove any other Leg \Rightarrow NO Explosion or Fire!
Assessing Combustible Dust Hazards

Cost Effectively Collecting Proper Data
Examples of Combustible Materials

Focus is on particles < 500 microns (35 mesh)

<table>
<thead>
<tr>
<th>Agricultural Products</th>
<th>Chemical Dusters</th>
<th>Epoxy resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg white</td>
<td>Adipic acid</td>
<td>Melamine resin</td>
</tr>
<tr>
<td>Milk, powdered</td>
<td>Anthraquinone</td>
<td>Melamine, molded</td>
</tr>
<tr>
<td>Milk, nonfat, dry</td>
<td>Ascorbic acid</td>
<td>(phenol-cellulose)</td>
</tr>
<tr>
<td>Soy flour</td>
<td>Calcium acetate</td>
<td>Melamine, molded</td>
</tr>
<tr>
<td>Starch, corn</td>
<td>Calcium stearate</td>
<td>(wood flour and</td>
</tr>
<tr>
<td>Starch, rice</td>
<td>Carboxy-methylcellulose</td>
<td>mineral filled phenol-</td>
</tr>
<tr>
<td>Starch, wheat</td>
<td>Dextrin</td>
<td>formaldehyde)</td>
</tr>
<tr>
<td>Sugar</td>
<td>Lactose</td>
<td>(poly) Methyl acrylate</td>
</tr>
<tr>
<td>Sugar, milk</td>
<td>Lead stearate</td>
<td>(poly) Methyl acrylate,</td>
</tr>
<tr>
<td>Sugar, beet</td>
<td>Methyl-cellulose</td>
<td>emulsion polymer</td>
</tr>
<tr>
<td>Tapioca</td>
<td>Paraformaldehyde</td>
<td>Phenolic resin</td>
</tr>
<tr>
<td>Whey</td>
<td>Sodium ascorbate</td>
<td>(poly) Propylene</td>
</tr>
<tr>
<td>Wood flour</td>
<td>Sodium stearate</td>
<td>Terpene-phenol resin</td>
</tr>
<tr>
<td></td>
<td>Sulfur</td>
<td>Urea-formaldehyde/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cellulose, molded</td>
</tr>
<tr>
<td>Agricultural Dusts</td>
<td>Carbonaceous Dusts</td>
<td>(poly) Vinyl acetate/</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>Charcoal, activated</td>
<td>ethylene copolymer</td>
</tr>
<tr>
<td>Apple</td>
<td>Charcoal, wood</td>
<td>(poly) Vinyl alcohol</td>
</tr>
<tr>
<td>Beet root</td>
<td>Coal, bituminous</td>
<td>(poly) Vinyl butyral</td>
</tr>
<tr>
<td>Carrageen</td>
<td>Coke, petroleum</td>
<td>(poly) Vinyl chloride/</td>
</tr>
<tr>
<td>Carrot</td>
<td>Lampblack</td>
<td>ethylene/vinyl acetylene</td>
</tr>
<tr>
<td>Cocoa bean dust</td>
<td>Lignite</td>
<td>suspension copolymer</td>
</tr>
<tr>
<td>Cocoa powder</td>
<td>Peat</td>
<td>(poly) Vinyl chloride/</td>
</tr>
<tr>
<td>Coconut shell dust</td>
<td>Potato</td>
<td>emulsion copolymer</td>
</tr>
<tr>
<td>Coffee dust</td>
<td>Potato flour</td>
<td></td>
</tr>
<tr>
<td>Corn meal</td>
<td>Potato starch</td>
<td></td>
</tr>
<tr>
<td>Cornstarch</td>
<td>Raw yucca seed dust</td>
<td></td>
</tr>
<tr>
<td>Cotton</td>
<td>Rice dust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rice flour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rice starch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rye flour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semolina</td>
<td></td>
</tr>
</tbody>
</table>

Soybean dust	Sunflower	
	Sunflower seed dust	
	Tea	
	Tobacco blend	
	Tomato	
	Walnut dust	
	Wheat flour	
	Wheat grain dust	
	Wheat starch	
	Xanthan gum	

Chemical Dusters	**Metal Ducts**	
Adipic acid	Aluminum	
Anthraquinone	Bronze	
Ascorbic acid	Iron carbonyl	
Calcium acetate	Magnesium	
Calcium stearate	Zinc	
Carboxy-methylcellulose		
Dextrin		
Lactose		
Lead stearate		
Methyl-cellulose		
Paraformaldehyde		
Sodium ascorbate		
Sodium stearate		
Sulfur		

Carbonaceous Dusts	**Plastic Dusts**	
Charcoal, activated	(poly) Acrylamide	(poly) Acrylonitrile
Charcoal, wood	(poly) Acrylonitrile	(poly) Ethylene
Coal, bituminous		(low-pressure process)
Coke, petroleum		
Lampblack		
Lignite		
Peat, 22%H₂O		
Soot, pine		
Cellulose		
Cellulose pulp		
Cork		
Corn		

Source: [OSHA Combustible Dust Poster](http://www.osha.gov)
Combustibility / Explosibility of Dusts

- Determination of combustibility or explosibility shall be permitted to be based on the following:
 - Historical facility data or published data that are deemed to be representative of current materials & process conditions
 - Laboratory analysis of representative samples
 - Permitted to test a sample sieved to <75μm
 - Permitted to test the as-received sample
 - Permitted to assume a material is explosible, forgoing the laboratory analysis
 - Absence of previous incidents shall not be used as basis for deeming a particulate non-combustible or non-explosible

Note:
- Test results strongly influenced by particle size, moisture content, presence of contaminants
- Be sure test results are representative for your material!
Typical Combustible Dust Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Hazard Evaluated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go/No Go Test (ASTM E1226)</td>
<td>Does the Dust Explode? (with a High Energy Ignition Source)</td>
</tr>
<tr>
<td>Minimum Ignition Energy (MIE)</td>
<td>The energy required to ignite a dust cloud under fairly ideal conditions.</td>
</tr>
<tr>
<td>Minimum Explosible Concentration (MEC)</td>
<td>The minimum amount of dust (dispersed in air) for an explosion.</td>
</tr>
<tr>
<td>Maximum Pressure Rise (Pmax) and Max Rate of Pressure Rise (Kst)</td>
<td>Dust Explosion Pressure Factors for Design of Containment and Relief Systems</td>
</tr>
<tr>
<td>Minimum Ignition Temperature (MIT) for Clouds and Layer</td>
<td>Used for Electrical Area Classification and for Dust Analysis if handled at Elevated Temperatures</td>
</tr>
<tr>
<td>Limiting Oxygen Concentration</td>
<td>Ignition prevention below what level of oxygen (used for inerting system design)</td>
</tr>
<tr>
<td>Electrostatic Chargeability</td>
<td>Determines How Easily a Material Develops and Retains Charge</td>
</tr>
</tbody>
</table>
Strategy for Dust Explosion Testing & Implications for Basis of Safety

3. Dust Explosion Screening
 - Can the dust form a cloud?

4. Dust Explosion Screening
 - Group Go/NoGo classification

5. Ignition Sensitivity
 - MIE (both IEC methods)
 - MIT
 - MIT Layer

6. Flammable Limits
 - LOC
 - MEC

Basis Of Safety
 - Avoidance of flammable atmospheres
 - Inering

Basis Of Safety
 - Avoidance of ignition sources

7. Explosion Severity
 - Pmax
 - Kst

Basis Of Safety
 - Containment
 - Explosion venting
 - Explosion suppression

Source: DEKRA Process Safety SAFETY GUIDE:
A strategic guide to characterization and understanding Handling Dusts and Powders Safely
Case Study: Hazards of Color Runs

June 27, 2015 Flash Fire (Formosa Fun Coast, Taiwan)

- Colored Corn Starch Deployed using Air Blowers
- “An Extremely Dense Dust Cloud over the Stage and its Immediate Vicinity”
- People near the Stage were “Ankle Deep” in Corn Starch
- **What Hazards Existed with Air Dispersed Corn Starch?**
- **497 People Injured; 15 Fatalities**
An Overview of Dust Hazard Analysis (DHA)

Establishing a Basis of Safety
Basis of Safety

- Avoidance of flammable atmospheres
- Elimination of ignition sources
- Provision against consequences of ignition
Managing Combustible Dust Fire and Explosion Hazards Requires…

Detailed knowledge of:

• Combustible material properties
• Process equipment
• Operating conditions
• Maintenance practices
• Existing controls (safeguards)
• and More…

• These are Generally Collected and Analyzed through a Dust Hazard Analysis (DHA), using NFPA 652

• Owner/operator of facility with potentially combustible dust shall be responsible for:
 • Determining combustibility and explosibility hazards of materials (Chapter 5)
 • Conducting a Dust Hazard Analysis (DHA) - Identifying and assessing fire, flash fire, and explosion hazards (Chapter 7)
 • Managing identified fire, flash fire, and explosion hazards
 • Prescriptive Approach (Chapters 5, 7, 8, 9)
 • It shall be permitted to use performance-based alternative designs for a building, equipment, ignition source control, and explosion protection in lieu of prescriptive requirements in Chapter 9 (Chapter 6)
 • Establishing Safety Management Systems (Chapter 8)
NFPA 652 (2019): Updates & Changes

• Issued as Consent Document (April 2018)

• Changes to DHA Timelines
 • DHA must be completed for Existing Processes by Sept 7, 2020
 • 2 Year Extension from NFPA 652 (2016)
 • 5 Year Revalidation Schedule

• Coordination with other NFPA Dust Standards
 • 2020 Edition of NFPA 654 proposes same Deadline
 • 2020 Editions of NFPA 61 and 664 will also be extending deadlines also

• Rearrangement of Chapter 8 & Chapter 9
 • Hazard Management: Mitigation & Prevention
 • Management Systems
Control of Combustible Dust Atmospheres (Control of Fugitive Emissions)

- Equipment should be maintained and operated in a manner that minimizes the escape of dust.
- Continuous local exhaust ventilation should be provided for processes where combustible dust is liberated in normal operation so as to minimize the escape of dust.
 - The dust should be conveyed to dust collectors.
- Regular cleaning frequencies should be established for floors and horizontal surfaces, such as ducts, pipes, hoods, ledges, and beams, to minimize dust accumulations within operating areas of the facility (1/32 inch; 0.8 mm – with adjustments).
 - **Warning Indicators that your Dust Accumulations are too large:**
 - Can you tell the color of the surface below the dust?
 - Can you write your name in the dust?
The Important Role of Dust Collectors

- Prevents Dust Accumulations
 - Collection & Removal of Fugitive Dusts
 - Controls Fugitive Dust Accumulations

- Key Design Considerations
 - Adequate Air Transport Velocity in Ductwork
 - Need to Prevent Dust Settling & Accumulation
 - Proper Design (and Direction) of Explosion Venting
 - Typically Installed Outdoors
 - Specific design features required to recirculate air
 - Never Store Dust in the Hopper
Implications of International Fire Code (2018) on Combustible Dust Operations
Sources of Requirements for Managing Combustible Dust

• OSHA
 • CPL 00-03-08 – Combustible Dust NEP

• Non-Regulatory Requirements
 • Insurance Company Standards (e.g. FM Global)
 • NFPA Codes & Standards

• Building & Fire Codes
 • Typically Adopted at Local & State Level
 • Applied for Issuance of Building Permits
 • Routine Inspections
 • Post-Incident
Regulatory Landscape: International Fire Code

What is an Occupancy Classification?

- A classification of buildings and structures that manages the use and occupancy
- To provide a rationale criteria that is relative to fire hazard and life safety considerations
- Implications on Building Construction, Size, & Layout

- Typical Classifications
 - Group F: Factory Industrial
 - Group S: Moderate- and Low-Hazard Storage
 - Group H: High Hazard

- **Group H Occupancy Classification**
 - Uses Tables in Chapter 50, Section 5003
 - General Rule based on “Exempt Amounts” for Storage & Use.
 - Amounts Greater than these levels become Group H
 - Adjustments allowed for Sprinkler Protection

- **Combustible Dust Classification (2012)**
 - No “Exempt Amounts”
 - Dust Manufactured or Used in a Fashion Presenting a Fire or Explosion Hazard (Table 5003.1.1(1))
 - Occupancy Group H2 Classification
 - Engineering Evaluation in Section 104.7.2 is required to quantitatively document risk analysis to **not** classify as Group H2
Chapter 22: Combustible Dust-Producing Operations

• Existing Requirements
 • Forced air or similar methods shall not be used to remove dust from surfaces
 • More stringent than existing NFPA requirements
 • Operational permits required for operations producing combustible dusts, such as flour mills and grain elevators

• New Requirements in 2018 Edition
 • Dust Hazard Analysis Required (NFPA 652)
 • 3 Year Implementation Cycle
 • Explosion Protection per NFPA Industry- or Commodity- Specific Standards
References

Sources of Recognized and Generally Accepted Good Engineering Practices (RAGAGEP)
References (with Free Access)

- National Fire Protection Association (NFPA)
 - NFPA 68 (2018), Explosion Protection by Deflagration Venting
 - NFPA 69 (2019), Standard on Explosion Prevention Systems
 - NFPA 61 (2017), Dusts in Agricultural and Food Processing Facilities
 - NFPA 484 (2019), Standard for Combustible Metals
 - NFPA 655 (2017), Standard for Prevention of Sulfur Fires and Explosions
 - NFPA 664 (2017), Dusts in Wood Processing and Woodworking Facilities
References (with Free Access)

- OSHA Dust Resources
 - OSHA Combustible Dust National Emphasis Program
 - Firefighting Precautions at Facilities with Combustible Dust

- FM Global

- United Kingdom Health & Safety Executive
 - Safe handling of combustible dusts: Precautions against explosions

- DEKRA Process Safety
 - SAFETY GUIDE: A strategic guide to characterization and understanding Handling Dusts and Powders Safely
Thank you for Participating in Today’s Presentation

Process-safety-usa@dekra.com
Mike.Snyder@dekra.com

609-799-4449
DEKRA Process Safety

We help our clients to **adapt PSM to their needs & to build internal PS competence**

<table>
<thead>
<tr>
<th>Consulting</th>
<th>Laboratory Testing</th>
<th>Competence Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Safety Engineering</td>
<td>- Combustible Dust Fire & Explosion</td>
<td>- Courses Covering all Key Aspects of Process Safety</td>
</tr>
<tr>
<td>- Dust Flash Fire & Explosion Hazards</td>
<td>- Gas & Vapor Flammability</td>
<td>- Continuing Education Units (CEU’s)</td>
</tr>
<tr>
<td>- Gas & Vapor Flammability Hazards</td>
<td>- Thermal Instability</td>
<td>- Multiple Languages</td>
</tr>
<tr>
<td>- Electrostatic Hazards</td>
<td>- Chemical Reactivity</td>
<td>- Multimedia</td>
</tr>
<tr>
<td>- Chemical Reaction Hazards</td>
<td>- Static Electricity</td>
<td>- Instructor-Led Content</td>
</tr>
<tr>
<td></td>
<td>- DOT & UN Transportation of Hazardous Materials</td>
<td>- Computer-Based Training</td>
</tr>
</tbody>
</table>
| | **- Explosivity / Energetic Materials** | | }

<table>
<thead>
<tr>
<th>Process Safety Management</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Program Implementation & Improvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Gap Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Process Hazard Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Quantitative Risk Assessments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Consequence Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Incident Investigations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>