

Dave Huizen, CIH

Grand Valley State University

Participant Take-Aways from this Presentation:

Understand why qualitative exposure assessments should be used

- Describe AIHA's Basic Workplace Characterization
- Explore Qualitative Assessment Tools
- Review AIHA's new Exposure Assessment Checklist Tool

► How do we traditionally define industrial hygiene exposure assessment?

▶ What do we think is done?

We often think exposure assessment is primarily quantitative measurement.

► Air sampling, noise measurements, etc.

► How good are quantitative measurements?

- ▶ Of 1.4 million samples from OSHA nearly 50% are non-detects
- > 20% of the samples above are double the exposure limit¹.
- Are we spending too many resources assessing exposure quantitatively?

How much time do you spend with qualitative assessment tools before moving to quantitative methods?

Exposure Assessment: AIHA's Basic Characterization of Workplace

- First Step in Exposure Assessment: Gather Information
 - ► Goal: Collect Information on workplace, work force, agents, etc.
 - Sources of Information
 - ► SDSs
 - Workers
 - Walk-around Surveys
 - ► Engineers
 - Records drawings, process, medical, employment, maintenance, monitoring
 - Literature search
 - ► OELs

Exposure Assessment: AIHA's Basic Characterization of Workplace

- Questions to Ask:
 - What are the hazardous agents? In what quantities?
 - What are the health effects?
 - What are the OELs
 - ▶ What are significant sources of exposure and how do workers interact with them?
 - What processes, operations, tasks, and work practices pose significant sources of exposure?
 - What are the process conditions? Temperature? Operating speed? Transfer points?
 - What controls are in place?

- Learning the process is one of the most important assessment methods
 - Process and Agent inputs
 - Intermediates Produced
 - Final Product
 - Waste Produced
 - Understand how Equipment Functions
 - Understand Cleaning Methods
 - Cleaning/Maintenance Non Routine Tasks

Observations

Sensory Perception – Eyes, Ears, Smell

► Controls in Place

- Employee Work Practices
- Routes of Potential Exposure

- Rule of 10s
 - Fraction of saturated Vapor Pressure to calculate approximate exposure
 - Fraction is based on the exposure controls in place

Level of Control	Fraction of Saturated Vapor Concentration
Confined Space - No Circulation	1/10th of Saturation
Poor - Limited Circulation	1/100th of Saturation
Good - General - 6 air changes per hour	1/1000th of Saturation
Local Exhaust Ventilation Capture	1/10,000th of Saturation
Containment	1/100,000th of Saturation

Saturation Vapor Concentration(ppm) = VP of Compound(mmHg)/760 X 1,000,000

- Rule of Ten Example
 - Methyl Ethyl Ketone (MEK) has a Vapor Pressure of 89.7 mmHg (at 25 °C)
 - Saturation Vapor Concentration (in ppm) = 89.7/760 X 1,000,000 = 118,000 ppm
 - ▶ What is the estimated concentration in air under "Good" control conditions?
 - ▶ What is the concentration in air using local exhaust cpature?

Vapor Pressure Index or Vapor Hazard Ratio (VHR)

► VHR = VP_{agent} / OEL _{agent}

- This can be used for prioritization of quantitative measurements
- It is also a useful tool when comparing a possible substitution of one material in the process for another and not relying on OELs alone.

► Vapor Hazard Ratio Link to Ventilation

Vapor Hazard Ratio Scale	Vapor Hazard Ratio	Required Level of Control	
1	< 0.05	General Ventilation 3 to 6 air changes/hour	
2	0.05 to < 1	Good General Ventilation (GGV) 6 to 12 air changes / hour	
3	1 to < 25	GGV with capture at emission sources	
4	25 to < 500	Capture at Emission Sources and Containment where practical	
5	500 to < 3000	Containment	
6	≥ 3000	Primary and Secondary Containment	

- ► Vapor Hazard Ratio Example
 - ▶ Benzene VP = 95.2 mmHg and OEL of 0.5 ppm
 - ► Vapor Hazard Ratio Benzene = 190.4
 - ▶ MEK VP = 86.7 mmHg and OEL of 200 PPM
 - ► Vapor Hazard Ratio of 0.42
 - ► Toulene VP = 28.4 mmHg and OEL of 20 PPM
 - ► Vapor Hazard Ratio of 1.42
 - What are the Ventilation Requirements for each substance

Particulate Hazard Ratio

Control Bands Based on OEL of Substance

Particulate Hazard Ratio	Agent's OEL (mg/m ³)	Required Level of Control	
1	>5	General Ventilation 2 to4air changes/hour	
2	≤5 to 1	Good General Ventilation (GGV) 4 to 6 air changes/hour	
3	≤1 to 0.1	Good General Ventilation (GGV) 6 to 8 air changes/hour	
4	≤0.1 to 0.01	Capture at Emission Sources and Containment where practical	
5	≤0.01 to 0.001	Containment	
6	≤ 0.001	Primary and Secondary Containment	

- Particulate Hazard Ratio
 - Dustiness of a particulate
 - ► Function of:
 - Size
 - Shape
 - Electrostatic charge
 - Moisture content
 - Density
 - Rule of Thumb for very fine dust droplet size, engineering controls should be increased by one level

- Vapor Pressure and Temperature
 - ► Vapor Pressure is a function the temperature
 - ▶ Most VPs for a substance are at 25° C
 - Antoine's Law
 - ► Can calculate a vapor pressure for a substance at different if certain constants are known

Mixtures

Raoult's Law

 Calculate a mixture as the vapor pressures are proportional to the amount of each substance - assumes ideal gas behavior.

Exposure Assessment: Exposure Assessment Checklist Tool

Uses the tools discussed above and puts them in a tool to easily estimate the AIHA Exposure Control Ratings based on the 95th percentile exposure

E	Exposure Control Ratings *	Cutoff (%OEL)	Confidence level
	0	$X_{0.95} \le 1\%$	High
	1	$1\% < X_{0.95} \le 10\%$	Medium Low
	2	$10\% < X_{0.95} \le 50\%$	
	3	$50\% < X_{0.95} \le 100\%$	
	4	X _{0.95} > 100%	

Exposure Assessment: Exposure Assessment Checklist Tool

The AIHA Checklist Tool

https://www.aiha.org/get-involved/VolunteerGroups/Pages/Exposure-Assessment-Strategies-Committee.aspx

Demonstration

Limitations

- Best for pure volatiles or semi volatile compounds
- Doesn't take into consideration dermal exposure route
- Dustiness issue

Benefits

 Can weed out the Non Detects and Obvious Overexposures before taking quantitative.

Questions?

Exposure Assessments: A How to Guide

Bibliography

- 1. Jahn SD, Bullock WH, Ignacio JS, eds. A Strategy for Assessing and Managing Occupational Exposures. Fourth edition. Falls Church, VA: AIHA; 2015.
- 2. Lavoue J, Friesen MC, Burstyn I. Workplace measurements by the U.S. Occupational Safety and Health Administration since 1979: Descriptive analysis and potential uses for exposure assessment. Ann Occup Hyg. 2013;57(5):681. doi:10.1093/annhyg/met027
- 3. Arnold. S. An Error In Judgment: Improving Exposure Assessment. Essentials Of Exposure Assessment. Falls Church VA: AIHA; 2016.