WORLD CLASS HEALTH & SAFETY EVENT Michigan Safety Conference

Using Direct Reading Instruments to Measure Airborne Concentrations of Chemicals during Battery Manufacturing

Scott Houghton, BEV Safety Manager, Ford Motor Company ghought2@ford.com

Scott Larkins, Senior Safety Engineer, Ford Motor Company Research and Innovation Center slarkins@ford.com

94 Years - Find Your Safety

- Case study to share what we've learned about measuring airborne concentrations chemicals used in battery manufacturing
- Today's presentation is based on our experience with lithium-ion battery research and manufacturing
 - Battery manufacturing processes
 - Battery chemicals
 - Measuring battery chemicals in real-time

HISTORICAL PERSPECTIVE

Electric Model T 1914 prototype

Lead acid batteries

Ford Ranger 1998-2002NiMH batteries

Ford C-Max hybrid 2003 -2019

Ford Focus Electric 2011-2018

Lithium-Ion batteries

LITHIUM-ION BATTERY RESEARCH & MANUFACTURING

CURRENT STATE

- Ongoing battery research at Dearborn R&E Center
- Ford Ion Park pilot plant in Romulus, MI opened in 2024
- Currently purchase batteries from suppliers such as LG and SK

LITHIUM-ION BATTERY RESEARCH & MANUFACTURING

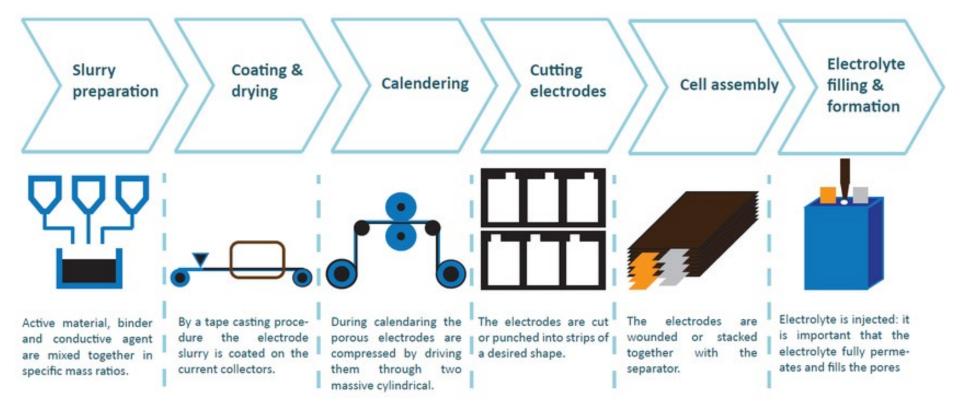
NEAR FUTURE

New battery plants:

- Blue Oval SK (BOSK)
- Joint venture with SK-On
- Glendale, KY and Stanton, TN
- Lithium Nickel Manganese Cobalt (NMC) batteries
- Blue Oval Battery Park (BOBPM)
- Marshall, Michigan
- Wholly-owned subsidiary
- Technology licensed from CATL
- Lithium Iron Phosphate (LiFePO₄) batteries

COMPARISON OF LITHIUM-ION BATTERY CHEMISTRY

Five Common Types of Lithium-Ion Batteries


Key Active Material	Lithium-Iron Phosphate	Lithium Nickel Manganese Cobalt Oxide	Lithium Manganese Oxide	Lithium Nickel Cobalt Aluminum	Lithium Titanate
Technology Short Name	LFP	NMC	LMO	NCA	LTO
Cathode	LiFeP04	LiNi _x Mn _y Co _{⊦x-y} O₂	LiMn ₂ 0 _{4 (spinel)}	LiNiCoAI0 ₂	variable
Anode	C (graphite)	C (graphite)	C (graphite)	C(graphite)	Li4Ti5O12
Safety					
Power Density					
Energy Density					
Cell Costs Advantage					
Lifetime					
BESS Performance					

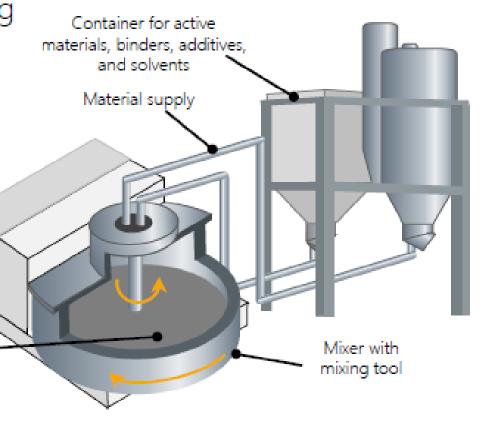
Source: International Renewable Energy Agency (IRENA), 2017

COMPARISON OF LITHIUM-ION BATTERY FORMATS

Cyline	drical cell	Prismatic cell	Pouch cell
	+		
height 650Hard casingLow individ	ual cell capacity ety features	Large size	 Soft casing Large size High individual cell capacity Geometrical deformation during (dis-)charging

https://www.grepow.com/blog/prismatic-vs-pouch-vs-cylindrical-lithium-ion-battery-cell.html

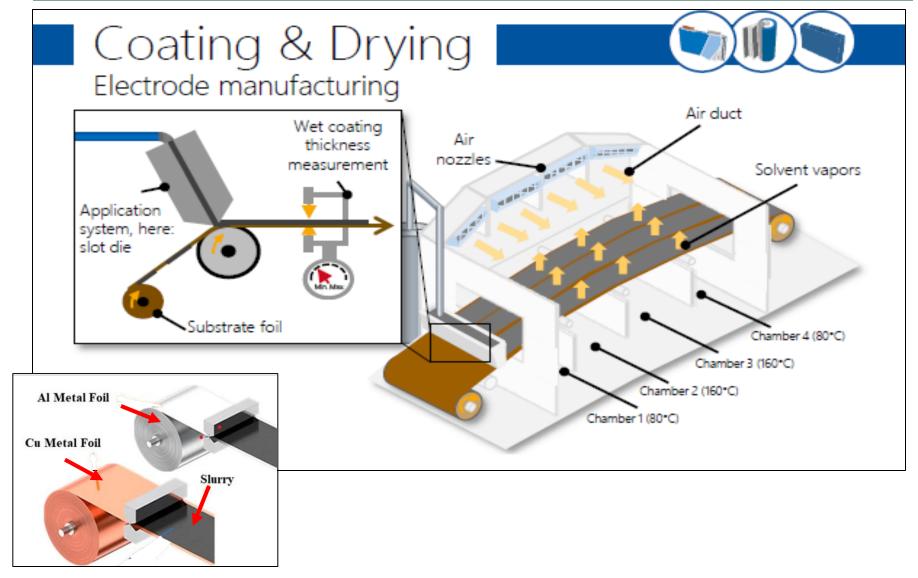
Slurry Preparation Electrode manufacturing

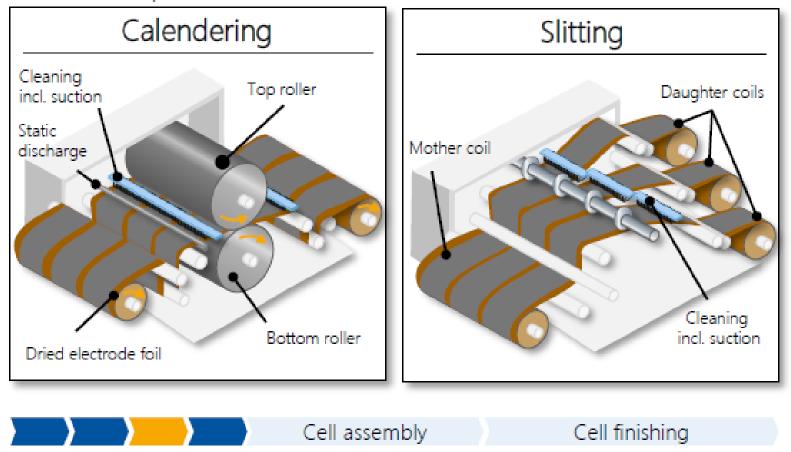

Separate processes for anode and cathode

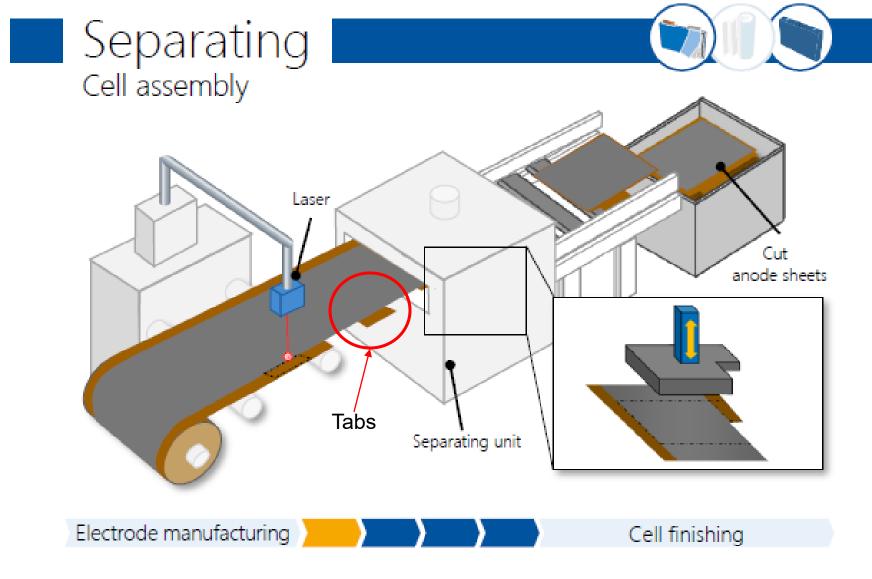
<u>Step 1:</u>

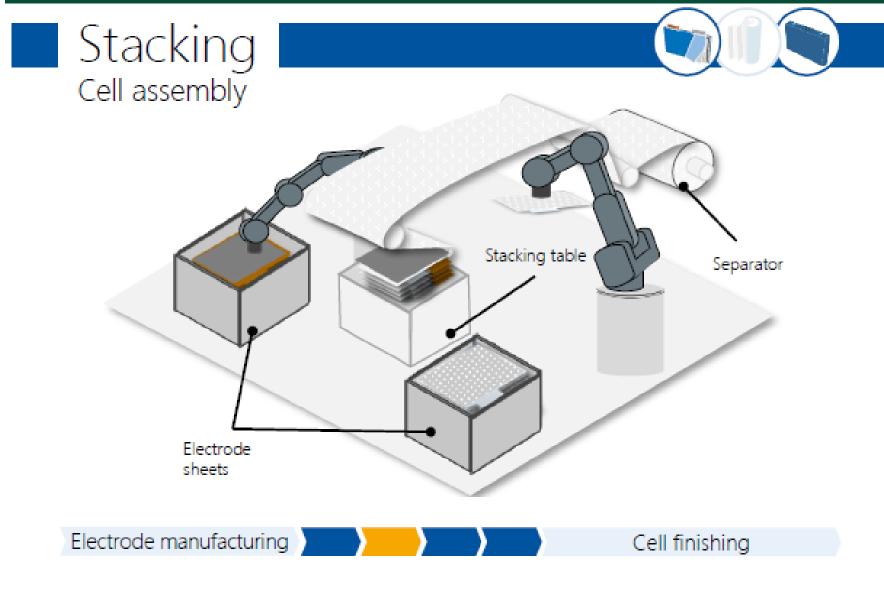
Dry component mixing

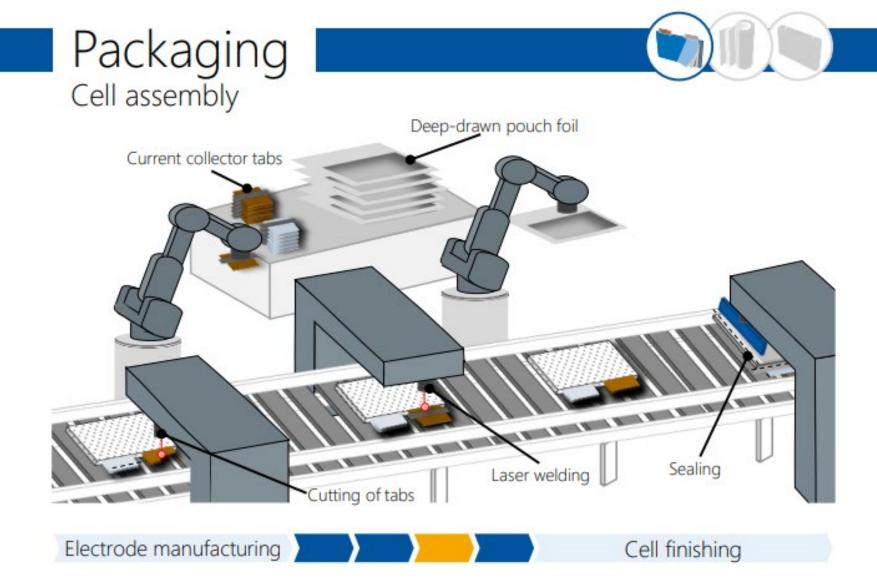
<u>Step 2:</u>

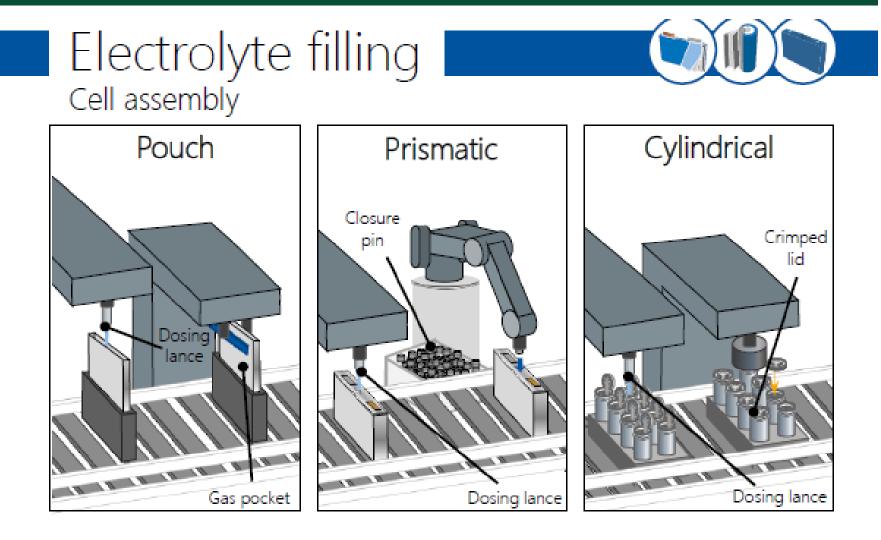

Adding solvent to create slurry

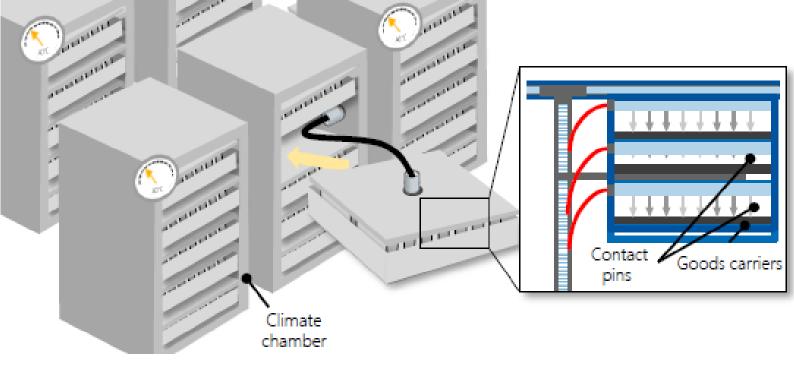

Cell assembly


Cell finishing

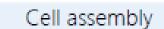


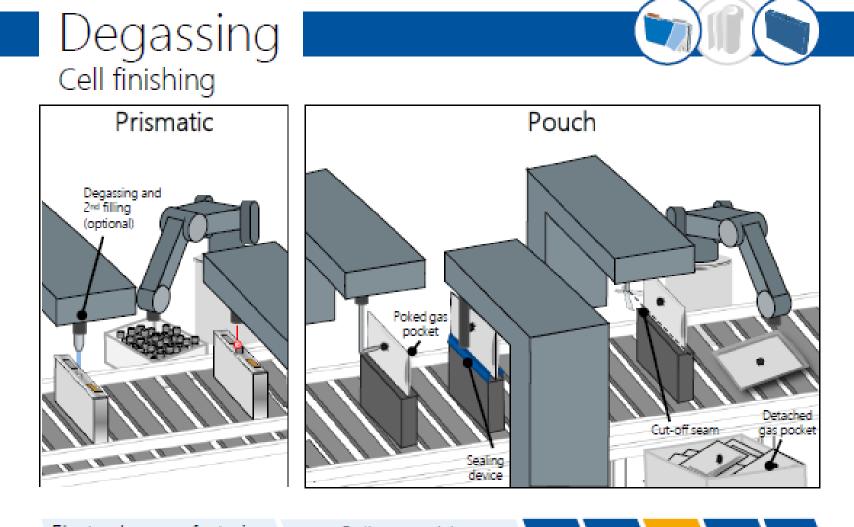



Calendering & Slitting Electrode production

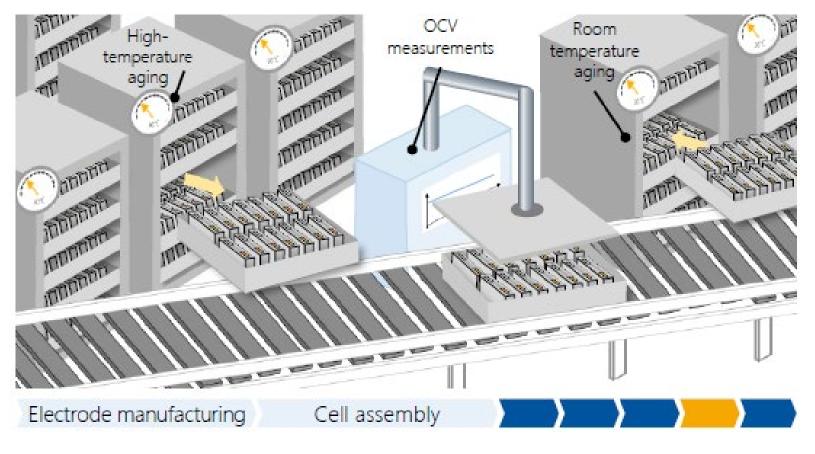


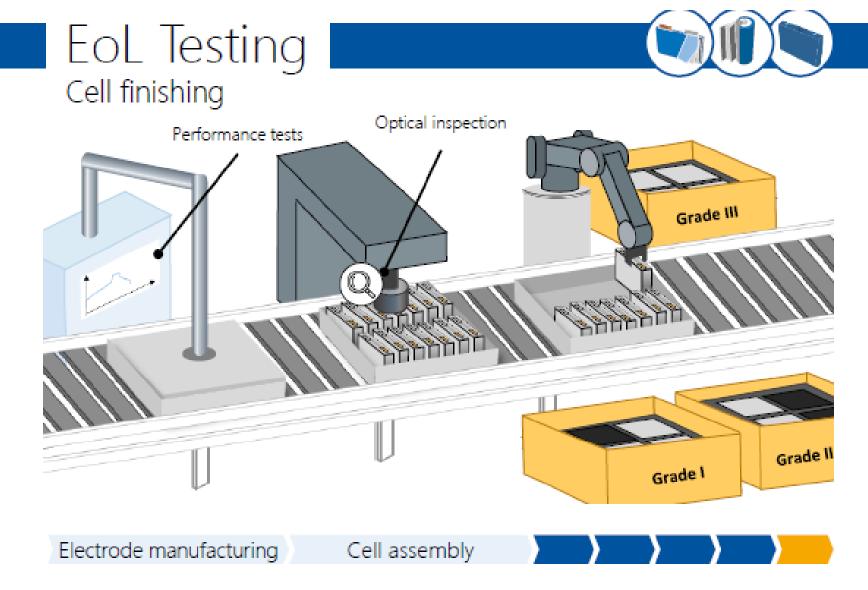
Electrode manufacturing


Cell finishing

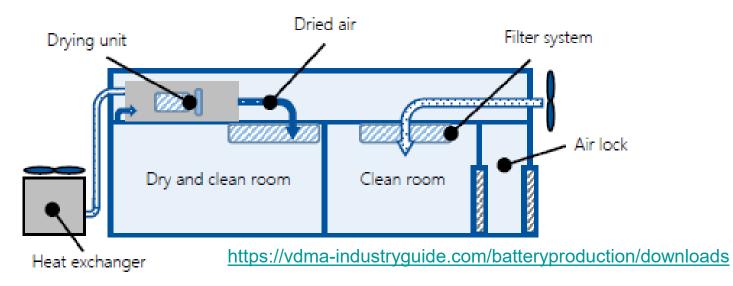


Electrode manufacturing




Electrode manufacturing

Cell assembly



Clean room: PPE for the protection of process integrity

Dry room: may be <0.05% RH

TYPICAL BATTERY MANUFACTURING CHEMICALS – ANODE

Powdered Components*

Graphite

Solvent*

De-ionized water

Metal Foil*

• Copper

*Typical anode components; specific materials may vary by manufacturer.

TYPICAL BATTERY MANUFACTURING CHEMICALS – ANODE

- Anode materials are relatively low toxicity
- Worker exposures can be determined using standard IH sampling methods

Substance	CAS #	Form	Exposure Limit*	Notes	IH Sampling Method
Graphite	7782-42-5	Particulate	2 mg/m ³	Respirable Particulate	NIOSH 0600 Gravimetric
Copper foil	7440-50-8	Particulate	•	Fume Dust	NIOSH 7303 ICP
De-ionized Water	7732-18-5	Liquid	NA	Non-toxic	NA

*Threshold Limit Values (TLVs) published by the American Conference of Governmental Industrial Hygienists (ACGIH)

TYPICAL BATTERY MANUFACTURING CHEMICALS – CATHODE

Powdered Components*

- Lithium Nickel Manganese Cobalt Oxide
 OR
- Lithium Iron Phosphate (LiFePO4)

Solvent*

• N-Methyl Pyrrolidone (NMP)

Metal Foil*

Aluminum

*Typical cathode components; specific materials may vary by manufacturer.

obalt LiNi_xMn_yCo_yO₂ LiFePO₄

Photo: https://www.chinafuran.com/uploads/201714518/nmethyl-pyrrolidone-nmp45140380463.jpg

TYPICAL BATTERY MANUFACTURING CHEMICALS – CATHODE

Substance	CAS #	Form	Exposure Limit*	Notes	IH Sampling Method
NMC (LiNiMnCoO2)	346417-97-8 182442-95-1	Particulate	0.1 mg/m ³	EPA NCEL**	NIOSH 0500 Gravimetric NIOSH 7303 ICP
Lithium	7439-93-2	Particulate		NA	
Nickel, (Insoluble inorganic cpds)	7440-02-0	Particulate	0. 2 mg/m ³	Inhalable fraction	NIOSH 0500 NIOSH 7303 ICP
Manganese, as Mn (Insoluble inorganic cpds)	7439-96-5	Particulate	0.02 mg/m ³ 0.1 mg/m ³	Respireable fraction Inhalable fraction	NIOSH 0500/0600 NIOSH 7303 ICP
Cobalt, as Co (Inorganic cpds)	7440-48-4	Particulate	0.02 mg/m Inhalable fraction		NIOSH 0500 NIOSH 7303 ICP
			2 4 yrs ar (rm ³		
Lthium Iron Phosphate	15365-14-7	Particulate	2.4 mg/m ³ 1 mg/m ³	EPA NCEL** Iron Salts, as Fe***	NIOSH 0500 Gravimetric NIOSH 7303 ICP
Aluminum foil (metal and insoluble cpds)	7429-90-5	Particulate	1 mg/m ³ Respirable fracton		NIOSH 0600 NIOSH 7303 ICP
N-Methyl Pyrrolidone	872-50-4	Liquid	d Further Discussion on Next Slide		

*Threshold Limit Values (TLVs) published by American Conference of Industrial Hygienists ** <u>Non-confidential List of TSCA New Chemical Exposure Limits, (updated</u> <u>March 2018) | US EPA</u>

BATTERY MANUFACTURING CHEMICALS – CATHODE MFG

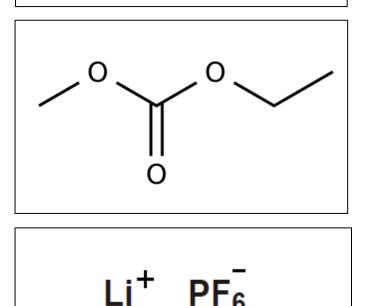
Comparison of NMP exposure limits:

Occupational Exposure Limit - NMP	ppm	mg/m ³	
American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs)	Not established	Not established	
US Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL)	Not established	Not established	
Michigan OSHA PEL	Not established	Not established	
Kentucky and Tennessee OSHA State Plans	Not established	Not established	
California OSHA PEL	1 ppm	4 mg/m ³	
Occupational Alliance for Risk Science (formerly AlHA) Workplace Environmental Exposure Limit (WEEL)	15 ppm 8-hour 30 ppm 15-minute	60 mg/m ³ 8-hour 120 mg/m ³ 15-minute	
Ontario Occupational exposure limits	97 pppm	400 mg/m3	
European REACH Legislation Derived No Affect Level (DNEL)	3.4 ppm	14 mg/m ³	
European Union, European Chemicals Agency Occupational Exposure Limits	10 ppm 8-hour 20 ppm 15-minute	40 mg/m ³ 8-hour 80 mg/m ³ 15-minute	
German MAK	20 ppm 8-hour 40 ppm 15-minute	82 mg/m ³ 8-hour 164 mg/m3 8-hour	

Standard IH Exposure Assessment Methods:

 Charcoal sorbent tube or passive dosimeter badge with analysis by gas chromatography (NIOSH Method 1302)

BATTERY MANUFACTURING – TYPICAL ELECTROLYTE FILL


After the battery cell has been assembled, liquid electrolyte is added to the cell.

Each manufacturer has a proprietary recipe, but all lithium-ion batteries* contain:

- A mixture of alkyl carbonates
- Lithium fluoride salts, such as lithium hexafluorophosphate

Common Carbonates

- Ethylene Carbonate
- Ethyl Methyl Carbonate
- Diethyl Carbonate
- Dimethyl Carbonate
- Propylene Carbonate

Lithium

Hexafluorophosphate

*Solid state batteries have a different chemistry.

BATTERY MANUFACTURING – TYPICAL ELECTROLYTE FILL

Substance	CAS #	Form	Exposure Notes		- I NOTES		NOTES		IH Sampling Method
Ethylene Carbonate	96-49-1	Dissolved solid							
Ethyl Methyl Carbonate	623-53-0	Liquid	No Publ	ished Exposure Limits					
Diethyl Carbonate	105-58-8	Liquid			Bureau Veritas (next slide)				
Dimethyl Carbonate	616-38-6	Liquid							
Propylene Carbonate	108-32-7	Liquid	2 ppm German MAK*						
Lithium Hexafluorphosphate	21324-40-3	Dissolved solid	2.5 mg/m ³	As fluoride	NIOSH 7906 Ion Chromatography				

* German MAK Commission

IFA - Databases: GESTIS Limit Values - Germany - MAK

For more information about the toxicology of alkyl carbonates, refer to a reliable source, such as the National Institute for Occupational Safety & Health (NIOSH) or the European Chemicals Agency (ECHA)

BATTERY MANUFACTURING – ELECTROLYTE FILL

IH Sampling & Analytical Method – Bureau Veritas, Novi Lab

	Reporting Limit				
Dimethyl carbonate (DMC)	4 mg/sample				
Diethyl carbonate (DEC)	4 mg/sample				
Ethylmethyl carbonate (EMC)	4 mg/sample				
Ethylene carbonate (EC)	20 mg/sample				
Methyl propyl carbonate (MPC)	4 mg/sample				
Propylene carbonate (PC) 4 mg/sample					
Anasorb 747, 210 mg, SKC 226-81A					
50 mL/min					
Up to 8 hours					
Up to 24 L					
Ship cold, particularly for DMC to prevent storage migration					
28 days under ambient and refrigerated temperatures. DMC samples must be stored refrigerated to prevent storage migration. Best to recommend refrigerated storage for all analytes.					

DIRECT READING INSTRUMENTS FOR BATTERY CHEMICALS

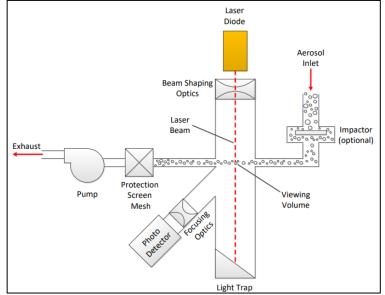
- There are traditional IH sampling methods available for most of the chemicals used in battery manufacturing.
- However, samples must be submitted to a laboratory for analysis. Lab results typically take 2-14 days.
- In the event of an unplanned event, such as a leak or spill, that is a long time to wait for results
- A direct-reading instrument that can measure airborne concentrations in real time would be a valuable resource

"Is it safe to go back to work?"

Make that decision based on data.

DIRECT READING INSTRUMENTS FOR BATTERY CHEMICALS

Objectives of Direct-Reading Instruments:


- Assess hazards following a spill and determine when it is safe to return to work
- Evaluate engineering controls and detect leaks
- Measure employee exposures during non-standard tasks to support selection of appropriate PPE

In most situations, a standard "four gas" meter will not provide any of these capabilities

PHOTOMETER FOR PARTICULATES

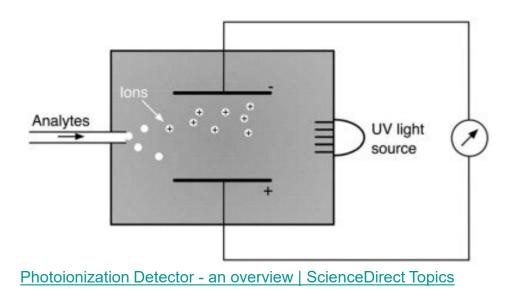

- Measures particles in the air as a function of light scattering
- Distinguish particle size, such as PM10, PM2.5, & PM1 using pre-screening device
- Detect particles > 1 um diameter
- Results affected by particle size and material properties
- Cannot identify specific substances
- Baseline ≠ zero

PHOTO IONIZATION DETECTOR (PID) FOR VOCs

- High-energy ultraviolet (UV) light ionizes molecules in a sample
- 9.8 eV, 10.6 eV, 11.7 eV lamps
- Charged particles generate a measurable electric current which is proportional to the concentration of the detected compounds
- More sensitive than an LEL sensor

PHOTO IONIZATION DETECTOR (PID) FOR VOCs

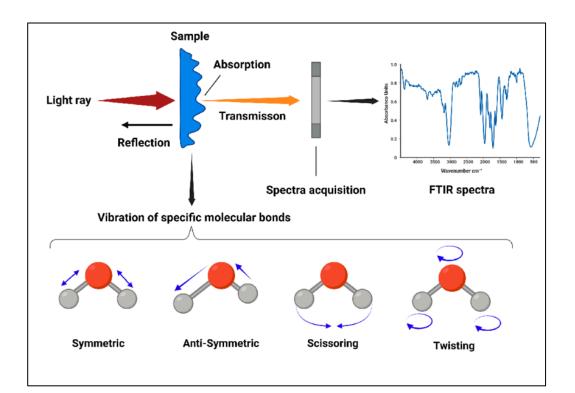
- Calibrated with isobutylene
- Non-specific: responds to all gases that are present in the air and can be ionized.
- Can be programmed to read in terms of a specific substance such as N-Methyl Pyrrolidone
- Conversion factors published by manufacturer, based on how the instruments responds to specific chemicals relative to isobutylene

Substance	Conversion Factor 10.6 eV
Isobutylene (calibration)	1
Ethylene Carbonate	NR
Ethyl Methyl Carbonate	18
Diethyl Carbonate	7
Dimethyl Carbonate	70
Propylene Carbonate	62
NMP	0.8 - 0.9
Ethanol	10 - 11
Xylene	0.39 - 0.54

Higher value = lower sensitivity relative to isobutylene

PHOTO IONIZATION DETECTOR (PID) FOR VOCs

PID Lessons Learned


- Substances with large correction factors will be hard to measure because of interference from other substances
- Don't assume that other chemicals aren't present

CASE STUDY #1 – PID LESSONS LEARNED

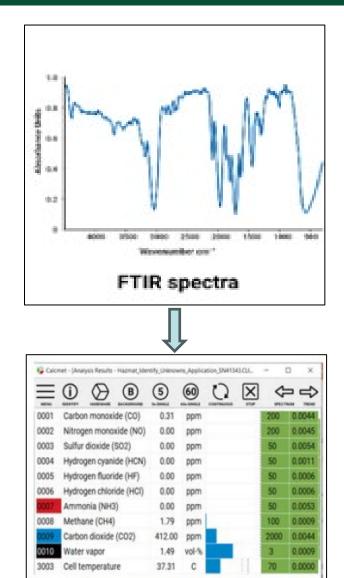
- An air leak in an exhaust duct resulted in an odor during cathode coating using NMP
- As a precaution, production was suspended, and personnel were evacuated from the area
- Personnel wearing PAPRs used the PID to take measurements for NMP
- The results of these measurements were up to 10 ppm, above the 1 ppm Ford OEL for NMP.
- Area samples were also collected using passive dosimeters and sent to the laboratory for NMP.
- Laboratory results subsequently showed concentrations of NMP ranged from 0.51 – 0.79 ppm, much lower than the PID measurements

FOURIER TRANSFORM INFRA-RED SPECTROMETER

https://www.researchgate.net/figure/nfraredspectroscopy-measures-the-interaction-of-infraredradiation-with-matter-Upon fig1 381354000 When **Infra-red (IR)** radiation is passed through an air sample, some radiation is absorbed

The wavelengths that are absorbed depend on the bond energies of the chemical molecules in the air sample

The signal received at the detector is converted to a spectrum representing a molecular 'fingerprint' of the sample by a mathematical function called a Fourier Transform.


The resulting spectrum can be used to identify and quantify specific chemical substances very accurately, without interference from other substances

INTRODUCING THE GASMET GT5000 PORTABLE FTIR

Software interprets the spectrum and displays the concentration of chemicals in parts per million

Typical range = 0.01 – 100 ppm

OK

casmet

Gasmet.com

"Take sample and tells us what's in it."

GASMET GT5000 PORTABLE FTIR PROS & CONS

PROS

CONS

- Future proof additional gases can be added to the database
- No calibration required
- Simple operation
- FTIR spectrometry is proven technology
- Low detection limit: 0.01 ppm
- "Almost" real time 5, 20, or
 60 seconds per sample

- High initial investment (\$60-75K)
- Ultra-pure nitrogen required to purge instrument
- Too large to be used for personal samples

Portability – backpack, not hand-held

CASE STUDY #2: COMPARISON OF NMP MEASUREMENTS:

Location	Number of Measurements	FTIR ¹		PID ²		Lab Samples ³	
		Range (ppm)	Mean (ppm)	Range ⁴ (ppm)	Mean ⁴ (ppm)	Duration (Minutes)	Results (ppm)
Area Location #1	9	0.49 - 0.80	0.64	7.1 - 7.6	7.4	448	0.57
Area Location #2	20	0.54 - 0.85	0.72	6.2 - 10.6	8.9	448	0.50
Area Location #3	27	0.51 - 0.88	0.70	4.0 - 9.8	7.7	452	0.43
Area Location #4	16	0.44 - 0.82	0.68	6.0 - 9.8	7.8	NA	

Notes:

(1) GASMET GT5000 FTIR

(2) RKI GX6000

(3) Samples collected using Assay Technology 546AT Organic Vapor Passive Dosimeter; analyzed by Bureau Veritas, Novi, MI

(4) PID results corrected for NMP using 0.9 CF provided by the manufacturer .

Ford OEL for NMP = 1 ppm
FTIR data < 1 ppm (safe to work)
PID Data >> 1 ppm (evacuate area)
Lab data was consistent with FTIR results*

*Laboratory data provides a time-weighted average concentration during the entire sampling period, while each measurement made with direct-reading instruments was a point-in-time measurement taken in one-minute intervals.

WHY DO WE GET HIGH READINGS FOR NMP WITH THE PID?

1. Are other chemicals present?

<u>Ethanol</u>

- Used in laboratories
- One source identifies ethanol as reaction product of NMP with water/humidity
- But CF=11: 11 ppm ethanol would increase the PID reading by only 1 ppm

NMP Decomposition Products

• Further research required

2. Is there something else causing high measurements?

PID literature identifies sources of LOW measurements, but not high:

- Oxygen
- High humidity
- Methane

A FINAL THOUGHT – DON'T OVERLOOK LOW TECH SOLUTIONS

"Directional Air Flow Leak Tester" (DAFLT)

WORLD CLASS HEALTH & SAFETY EVENT Michigan Safety Conference

Thank You for your attendance.

94 Years - Find Your Safety_