

Understanding Flammable Liquid Ignition Risks from Static Sources Involving Plastics

Mike Snyder, VP Operational Risk Mgmt. DEKRA Process Safety

April 15, 2025

©2025 DEKRA North America, Inc. or its subsidiaries. All rights reserved. Confidential Information.

DEKRA: A Trusted Partner for Process Safety & Fire Prevention

We help our clients to adapt Process Safety to their needs & to build internal competence

Consulting

Engineering

- Dust Flash Fire & Explosion Hazards
- Gas & Vapor Flammability Hazards
- Electrostatic Hazards
- Chemical Reaction Hazards

Process Safety Management

- Program Implementation
 & Improvement
- Dust & Process Hazard Analysis
- Incident Investigations
- Consequence Modeling

Laboratory Testing

- Combustible Dust Fire & Explosion
- · Gas & Vapor Flammability
- Thermal Instability
- Chemical Reactivity
- Static Electricity
- DOT & UN Transportation of Hazardous Materials
- Explosivity/Energetic Materials

Training & Competency

- Courses Cover Practical Applications
 & Case Studies
- Standard Topics and Customized
 Options Available
- On-site and Publicly Held Options

More Info:

2 © 2025 DEKRA North America, Inc. or its subsidiaries. All rights reserved.

Outline for Today's Conversation

- Ignition Risks Viewed through the Fire Triangle
- Electrostatic Hazards Evaluation and Control
- Global Information Sources for Conducting Electrostatics Evaluation
 - NPFA 77 (2024), Recommended Practice on Static Electricity
- Unique Electrostatic & Ignition Hazards of Plastic Containers
 - NFPA 30 (2024), Flammable and Combustible Liquids Code
 - Interior Container Surfaces
 - Exterior Container Surfaces
- Discussion & Conclusion
- Introduce Table of References

Charge Generation

Flammable Atmosphere

> Discharge Mechanisn

Plastics & Flammable Liquids

New Emerging Risks over the Past 50 Years

- NFPA 30 (1969) had limited recognition of plastic containers for flammable & combustible liquids.
 - Plastic Containers present ignition hazards <u>both</u> Inside & Outside the container.
 - Basis for OSHA 1910.106
- Users have demanded purer solvents & reagents.
 - Less Contaminants = Lower Conductivity
 - Concerns about contamination from Dip Pipes.
- Emerging "Comfort" with Gasoline in Plastic Containers.
 - The vapor space of most Gasoline Containers is typically <u>Above</u> the Upper Flammable Limit (UFL).
 - Many solvents (particularly alcohols and weathered gasoline) have vapor spaces <u>between</u> LFL & UFL

©2025 DEKRA North America, Inc. or its subsidiaries. All rights reserved.

Ignition Risks: The Fire Triangle

The Foundational "Recipe for Fire" in NFPA 30 and NFPA 660

FUEL

 Liquid (vapor or mist), gas, or solid capable of being oxidized. Combustion always occurs in the vapor phase; liquids are volatized, and solids are decomposed into vapor prior to combustion

OXIDANT

- A substance which supports combustion.
- Usually oxygen in air

IGNITION SOURCE

• An energy source capable of initiating a combustion reaction

レ

Explosion Prevention & Protection

Our Goal is to Establish A Basis of Safety

- Avoidance of flammable atmosphere
- Elimination of (Competent) ignition sources
- Control oxygen concentration
- Provision against consequences of ignition

Fundamental Principles of Static Electricity

- Static is Accumulation of electrical charge on surfaces due to friction or separation of materials.
- **Can produce "sparks"** capable of igniting flammable atmospheres, vapors, gases, or dust.
- **Commonly occurs** with non-conductive (insulating) materials like plastics or synthetic fabrics.
- **Control methods** include grounding, bonding, humidity control, and antistatic treatments.

Electrostatic Charge Generation

Tribocharging

- Electrostatic charges are usually generated when any two materials make and then break contact, with one becoming negative and the other positive.
- The build up of the charge on electrically isolated conductors and/or on insulating materials, can give rise to electrostatic discharges.

Electrostatic Charge Generation

Flow Electrification

- Ions occur naturally in fluids.
- More ions of one polarity stick to the wall.
- Their counter ions move with the liquid flow.

Static Charge Generation Example

©2025 DEKRA North America, Inc. or its subsidiaries. All rights reserved.

Typical Ignition Sources BS EN 1127-1 (2019)

- Personal smoking materials
- Hot work & Open flames
- Mechanical friction and sparks
- Impact sparks
- Hot surfaces and equipment
- Thermal decomposition
- Electrical equipment
- Electrostatic discharges

>

An Overview of Ignition Sources: Electrostatic Considerations

©2025 DEKRA North America, Inc. or its subsidiaries. All rights reserved

Evaluating a Static Ignition Source

Important Electrostatics Definitions

- Conductive
 - The ability to allow electric charges to move.

Nonconductive (Insulating)

- The ability to resist the motion of an electric charge.
- Charge generation rate <u>greater than</u> charge relaxation rate.

Static Dissipative (Semiconductive)

- Capable of dissipating a static electric charge at an acceptable rate
- Charge dissipation rate <u>greater than</u> charge generation rate.

Practical Views of Static Discharge

Energies of interest range widely from 0.01 mJ to 1000 J ... 8 factors of 10!

Energies > 1 J threaten human health

Humans commonly experience sparks with energies in the range 1 - 100 mJ

Ignitions can occur with spark energies in the range 0.01 – 1 mJ.

A Deeper Look at Minimum Ignition Energy

- Ignition energy depends on concentration
- Minimum Ignition Energy (MIE) occurs at a specific concentration.
- The energy of common electrostatic discharges greatly exceeds the MIE of common solvents

Typical Minimum Ignition Energies

Reference: NFPA 77 (Annex B) and NFPA 660 (Annex Y)

The US View: Static Electricity

Fundamental Considerations through NFPA 77

- NFPA 77 (2024), Recommended Practice on Static Electricity
- The purpose of NFPA 77 is to provide assistance in controlling the hazards associated with the generation, accumulation, and discharge of static electricity by providing:
 - A basic understanding of the nature of static electricity
 - Guidelines for identifying and assessing hazards of static electricity
 - Techniques for controlling the hazards of static electricity
 - Guidelines for controlling static electricity in selected applications
 - Chapter 11 Static Electricity Hazards in Non-Bulk Containers
 - Several useful reference Appendices
- Generally considered a Recognized and Generally Accepted Good Engineering Practice (RAGAGEP) for Static Electricity

The US View: Static Electricity

Expanded views through NFPA 30

- NFPA 30 (2024), Flammable and Combustible Liquids Code
- Historically, Static not formally documented in Hazardous Area Classification studies.
- Practices are beginning to evolve:
 - NFPA 30 (2024), Section 6.5.4 Static Electricity
 - Class I Liquids and Class II/III Liquids Heated above Flashpoint
- Some gaps exist, for example related to use of insulating plastic materials in electrically classified areas.
- All nonmetallic containers, equipment, and piping shall be designed and operated to prevent electrostatic ignition where the potential for an ignitable mixture exists.

©2025 DEKRA North America, Inc. or its subsidiaries. All rights reserved.

Evaluation & Control of Static Hazards

Characterization of Materials & Equipment

The first step in assessing electrostatic hazards is to determine the relevant properties of the materials being processed, handled, and/or used in the plant.

- Minimum Ignition Energy of flammable atmospheres.
- <u>Resistance-to-Ground</u> of conductive (metal) objects.
- <u>Surface and Volume Resistivity of plastic containers and liners.</u>
- <u>Electrostatic Chargeability</u> of powders and liquids.
 - Volume Resistivity of powders
 - Conductivity of liquids
- <u>Electrical Resistance</u> of operators' footwear and floors.

Considerations for Plastic Containers

- Inside the Container
- Outside Surfaces

Static Risks Inside Plastic Containers

- Main Hazard:
 - Igniting Flammable Vapors that accumulate inside the container.
 - Dangerous when the vapor space is between LFL and UEL (e.g. alcohols)
- Controlling Ignition Risks:
 - Difficult to Bond/Ground Systems involving Plastic Containers.
 - Consider Inerting containers when Vapor Space is in flammable range.
- Impact of Liquid Conductivity:
 - Low Conductivity Liquids more Easily Generate Static
- Importance of Proper Filling Methods (Next Slide):

Plastic Containers in Flammable Liquid Service

Static Risks: Outside Surfaces of Plastic Containers

• Main Hazard:

- Igniting Flammable Vapors that accumulate outside the container of from other external sources in the area.
- External Surface Charging:
 - Surface Handling and Tribocharging.
- Static Discharges:
 - Discharge between the Plastic Container and Grounded Objects, including personnel.
- Environmental Factors:
 - Dry Conditions and Low Humidity Increase External Static Build-up.
- Control Measures:
 - Consider alternative Container Materials.
 - Wipe External Surface with Wet Cloth Before bringing into environment with flammable vapors.

Flammable Liquid Static Case Study

©2025 DEKRA North America, Inc. or its subsidiaries. All rights reserved.

A Case Study: Plastic Pail Liners

Looking at the Impact of a Small Change

Use of 10 – 20 mil Pail Liners for steel pails is increasing

- Viewed as a Waste Minimization Project
- Often used for equipment draining & waste transfers

Most Pail Liners are made from High Density Polyethylene

- Volume Resistivity: 10¹⁷ to 10¹⁸ ohm-cm
- Surface Resistivity: 10¹¹ Ω/sq. typical

Often Advertised as 'Anti-Static'

Use caution if reference is made to NFPA 99

More Flammable Liquid & Electrostatic Risks:

- Many solvents with moderate vapor pressure (LFL UFL)
- Spray Filling without use of Dip Pipes

Concluding Thoughts

- Electrostatics present risks in most operations involving transferring and processing of liquid & solids.
- Static Electricity Ignition Scenarios Involve 4 Aspects:
 - Charge Generation
 - Charge Accumulation
 - Discharge Energy Level
 - Sensitivity of Atmosphere to Ignition
- Plastic (non-conductive) containers used in flammable liquid Sensitivité service present unique hazards.
 - Several methods available to identify risk factors.
- NFPA 77 (2024), Recommended Practice on Static Electricity, serves as a comprehensive source of information for conducting electrostatics evaluation.

References

- NFPA 77 (2024), Recommended Practice on Static Electricity
 - www.nfpa.org/77
- NFPA 30 (2024), Flammable and Combustible Liquids Code
 - www.nfpa.org/30
- IEC 60079-32-1: Explosive Atmospheres Part 32-1: Electrostatic Hazard Guidance"
 - https://webstore.iec.ch/publication/60166
- API RP 2003, Protection Against Ignitions Arising Out of Static, Lightening, and Stray Currents
 - https://www.api.org/~/media/files/publications/whats%20new/2003_e8%20pa.pdf
- EN 1127-1:2011, Explosive Atmospheres. Explosion Prevention and Protection. Basic Concepts and Methodology
 - https://knowledge.bsigroup.com/products/explosive-atmospheres-explosion-prevention-andprotection-basic-concepts-and-methodology-3?version=standard&tab=overview
- M. Glor, "Hazards Due to Electrostatic Charging of Powders", Journal of Electrostatics, Vol 16, (1985), pg 175-191
 - https://www.sciencedirect.com/science/article/abs/pii/0304388685900415

References (2)

- H. L. Walmsley, "Avoidance of Electrostatic Hazards in the Petroleum Industry," Journal of Electrostatics, Vol. 21-22, 1992.
 - https://books.google.com/books/about/The_Avoidance_of_Electrostatic_Hazards_i.html?id=QdirHAAACAAJ
- H. L. Floyd II, "Electric Shock Injuries from Static Electricity Discharges," IEEE Paper No. ESW2011-17.
 - https://ieeexplore.ieee.org/document/6164721
- M. Snyder and K. Robinson, "Static Ignition Hazards with Plastic Containers", <u>Process Safety Progress</u>, Volume 43(2), (2024), pg 231-232.
 - https://doi.org/10.1002/prs.12608
- DEKRA Practical Guide to Industrial Electrostatics: Hazards, Problems, and Applications
 - https://www.dekra.us/en/process-safety-training/practical-guide-industrial-electrostatics/

Thank You!

Mike Snyder PE, CSP, CFPS Vice President, Operational Risk Mgmt. Email: mike.snyder@dekra.com

LinkedIn

Details on Electrostatics: Appendix Slides

©2025 DEKRA North America, Inc. or its subsidiaries. All rights reserved.

Common Electrostatic Discharges

Discharge Types are based on resistivity and the geometric arrangement of the charged object and the geometry of the discharge initiating electrode

- Sparks Between Conductors
 - Stored (Spark) Energy = $\frac{1}{2}$ CV².Energy can exceed 1000 mJ.
- Discharges Between Conductors and Insulators (Brush Discharge)
 - Maximum discharge energy of 4mJ.

- A surface coated with a thin (< 8mm) layer of an insulating material will act as a capacitor to store charge. (note: 8 mm ~ 1/3 inch). Energy can exceed 1000 mJ.
- Discharges During Filling Operations (Bulk/Cone Discharge)
 - Bulking discharges have a maximum effective energy of about 25mJ and occur during the filling of vessels with insulating powders.

Putting it All Together: Electrostatic Ignition

- Electrostatic ignitions of vapors and powders can occur when charge is separated and accumulates.
- Electrostatic discharges have provided competent ignition sources many fires & explosions.

>